

Distributed Generation Improvements in Industrial Applications

CHP Integration with Fluid Heating Processes in the Chemical and Refining Sectors

Jeff Zollar

ORNL Technical Project Officer

Prepared by Henry Mak

Southern California Gas Company, Los Angeles, CA

Energy Nexus Group, Carlsbad, CA

January 30, 2002

CHP Integration with Fluid Heating in Chemical and Refining Sectors

- Links to DER Strategy
 - Encourage CHP in Industry (Chemical and Refining)
 - Incremental Fluid Heating CHP Applications Could Double the CHP Potential from Traditional Steam Systems
 - Environmental and Efficiency Benefits

Impact to CHP Opportunity in Chemical and Refining Sectors

- Based on Selected Chemicals and Refining Processes
- 22 GW of Remaining New Steam CHP Potential
- 44 GW of New Fluid Heating CHP Potential
- 66 GW of Total New CHP Potential

(7 GW of Existing CHP Capacity in Selected SICs)

CHP Integration with Fluid Heating in Chemical and Refining Sectors

Objectives

- Estimate the MW Potential of a Larger CHP Market as Compared to Traditional Steam CHP
- Evaluate Technical Issues Including Temperature Requirements and Process Integration
- Industrial Survey to Augment Field Findings
- Recommendations to Overcome Economic and Technical Hurdles

Scope of Work

PROGRESS	•	Task 1: Market Assessment			
Completed		 Identify SICs with fluid heating processes, equipment types, temperatures 			
		 Estimate MW potential, develop economic criteria for U.S. 			
	•	Task 2: Technical Feasibility			
		 Detailed evaluation of two fluid heating applications (ethylene plant and refinery) 			
In progress		 Investigate issues affecting feasibility of CHP integration (economic & environmental) 			
	•	Task 3: Industrial Survey			
		 Discussion Paper 			
		Perform Industrial Survey			
TBD		Recommendations			
	•	Task 4: Final Report			

Task 1.1 - Fluid Heating Processes

Refining Processes	Fluid Heating CHP (GW)	Chemical Processes	Fluid Heating CHP (GW)
Distillation		Ethylene	5.50
Atmospheric	10	Ammonia	1.9
Vacuum	3	Carbon Black	0.57
Vaddiii	O	Methanol	0.48
Coking	4	Urea	0.27
Catalytic Processes		Styrene	0.24
•	0	Vinyl Chloride	0.22
Fluid Cracking	3	Benzene, Toulene, Xylenes	0.18
Reforming Hydrocracking	8	Soda Ash	0.08
	2	Propylene Oxide	0.08
Hydrotreating	5	Propylene Oxide	0.08
		Caprolactam	0.05
Total	34	Acrylonitrile	0.01
		Total	9.66

Task 1.2 & 1.3 - Target Markets

Regions with Positive "CHP Spark Spread"

- Texas (14 GW)
- Louisiana (7.8 GW)
- California (4.8 GW)
- Pennsylvania (1.3 GW)
- New Jersey (1.2 GW)
- Washington (1.2 GW)
- Minnesota (0.7 GW)
- Note: "CHP spark spread" is defined as average industrial electric price compared to cost of power from a 5MW CHP system including fuel, capital and O&M

Task 2.1 - Technical Assessment

- Direct-Coupled CHP (e.g. ethylene plant example)
 - Gas Turbine Exhaust Used as Combustion Air to Furnace
 - Can be integrated with all process temperature requirements
 - Gas turbine selection based on mass flow through furnace
 - Design sensitive to exhaust O₂ content and temperature
 - Gas turbines with lower inlet temperatures with higher O₂
 preferred
 - Single shaft turbines exhibit favorable thermal inertia characteristics in the case of an emergency shut-down

Task 2.1 - Technical Assessment

- Indirect-Coupled CHP (e.g. Paramount Refinery)
 - Gas turbine exhaust is directed to a waste heat exchanger (no fluid mixing)
 - Well suited to convection heat transfer applications (no-high temperature radiant duty)
 - Not suitable for processes with high-temp endothermic "cracking" chemical reactions
 - Fluid heating and steam generation can be accomplished in a single waste heat exchanger

Progress to Date

Progress Report Submitted

- Task 1: Fluid Heating Market
 - Identify SICs with Fluid Heating (Task 1.1)
 - Database Screening (Task 1.1)
 - Economic Criteria (Task 1.2)
 - Target Markets (Task 1.3)
- Task 2: Site Evaluation
 - Performed Refinery Site Visit (Task 2.1)
 - Performed Technical Assessment (Task 2.1)
 - Economic and Environmental Assessment (Task 2.2)
 - Recommendations (Task 2.3)
- Task 3: Industrial Survey
 - Discussion Paper (Task 3.1)
 - Perform Industrial Survey (Task 3.2)
 - Recommendations (Task 3.3)
- Task 4: Final Report

Schedule

